If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+63X+90=0
a = 1; b = 63; c = +90;
Δ = b2-4ac
Δ = 632-4·1·90
Δ = 3609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3609}=\sqrt{9*401}=\sqrt{9}*\sqrt{401}=3\sqrt{401}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-3\sqrt{401}}{2*1}=\frac{-63-3\sqrt{401}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+3\sqrt{401}}{2*1}=\frac{-63+3\sqrt{401}}{2} $
| (2p=12)+(3p-8)= | | 4x+2(x-3)=6x | | 3b+10=31 | | y-9.5=8.5 | | 25(5x–3)+35=4x–15 | | y-9.5=8.5y−9.5=8.5 | | 4r+2-4=22 | | (r^2+1)=0 | | –9(t−93)=27 | | 2(x+3)=2+4(x-2) | | 4y+36=8(y+7) | | -5x-15x=100 | | -2(4-2x)-6=2 | | x+5+11=180 | | -2(x+8)=7x-43 | | 5x+15=2x+6+24 | | 4y+6-6y-8=-6 | | 20x+12+9x=180 | | 5h+12=42 | | 0.005x×925=0.03x+1250 | | (700*x)=329 | | 2v-42=4(v-6) | | 3x=-5x+32 | | p/5+7=22 | | n^2−6n=0 | | 7-4t,t=1/2 | | (x+9)=(x+9) | | 7y=y+90 | | 72(x+4)=360 | | 5z+11+7z-3=180 | | -6y+2(y-4)=-28 | | -6b=-10b-8 |